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A bstract

By adopting Nester’s 4- dimension al special orthonormal frames, the tetrad equa-
tions for vacuumn gravity are putinto explicitly causal and syrmimetric hyperbolic
form, independent of any time slicing or other gauge or coordinate specializaton.




0.1. Introduction

We have previously given aw c]] set and causal exterior differential system for
vacuum gravity, gencrated by a closed set of differential forims describing the
iimmersion of 4- dimensional spacetime into a flat 10 dimensional space [1]. The
orthonormal frame bundle of the latter has a canonical basis of 10 (translation)
1- forms w* and 45 (rotation) 1- forms w*, satisfyingthe strut.tlurc equations
of the lic group 1S’0(10). Dividing the rauge ¢ = 1, ..., 10 into two ranges
i,7=01---,4andA,B=5,---,10, these arc

dw' w; AW+ wi AwP = 0
dw® wJA Ao’ 4wt AP =0
dwp 4 W AW wh AWl 0
dwy 4 Wi A whdwy A wi=0

dwf - wi Awh 4 wi Awl = 0
The exterior differential system is generated by 6 (immersion) | - forms w?,
their c. losuic 2- forms dw?: - w# A Wi, and 4 closed 3- forms ensuring Ricci -
flatness, namnel y, i A wi e where % ]{;. - dw; Jwh A w;‘-' = - wh A wj’-‘ defi nes
the Rieinann 2- forms.
The significant result is the calculation of the Cartan characteristic integers

$= {S[)>-$|> 82, $3} = {6, (i, ]0, 8}

This snows the solutions to be 25 dimensional, regular (i.c., in principle con-
structed from a nested set of Cauchy-Kowaleski integrations) and causal (i.c.,
s4 = 0, so the solutions arc determined from suitable data set on 3 dimensional
;- and wit,
i.e., these remain independent when pulled back into a solution manifold and can
be adoptled as a basis there.

The six basis forms w} and 15 basis forms wij, which occur of course in the
st ructure relations, do not appear explicitly inthe exterior differential systemn,
sh owing the solutions to be bunidles having 21 dimensional fibers over a four di -
mensional base. Iovidently this expresses arbitrary 0(4) (or Lorentzian) rotations
of the tetrad frame w* and O(6) rotations of the immersion co-frame w# at cach
point of the base. On a four dimensional cross-section al the forms cau be ex-
panded on the w' basis, the w} being a metric connection.

immersed manifolds). The solutions arc involutory with respect to w', w




In Section 2 we give a new immersion exterior differential system for vac
uumn gravity that incorporates the higher diinensional special orthonormal framne
(11 S01{’) conditions proposed by Nester [2]as a generalization of the special or-
thonormal frame conditions (S01") inthrec dimensional Riemannian geometry [3]
[4] [5]. Calculation of the Cartancharacteristicintegers for this exte-
rior diflerential system for 4 dimensional Riemannian geometry shows
that it is also wellset and causal, so that, as Nester conjectured, such
frames canbe imposed without impediment in extended regions of vac-
uum spacetime. Solutions arc now 19 dimensional, the fibers expressing only
arbit rary O(6) rotations of the co-frames.

These exterior differential systems include all integrability conditions for the
dctermination of a metric on the base, or onany 4 dimensional cross scction. I
terms of base spare coordinates @' (yi:1,2,3, 4), invertible matrices of functions
Nu(x) and (M (z) exist suchthat 'x, ;M= 6% (=1, 2, 3,4). Weintroduce the
Minkowskimetric, i.e,

1 0 0 O
;. 0 100
7] -
0 01 0
(000 ~])

to raise and lower left, or Lorentz,indices. Then the metric is given by ¢"v =
A A Inserting w' = 'A, da’ inthe structure cquations and in the exterior
differential system gives the partial diflerential equations for coordinate compo-
ncntsof thetetrad field.

In Section 3 we reformulate the higher dimensional speaal orthonormal frame
system in explicit orthonorinal tetrad componients, using the signature convention
satisfied by 9. We use the dyadic formalism of references [6] and [7], in which
theunit 4- vector field 1)\ is given a special meaning: it traces a congruence
of timelike world lines, a 3 parameter “fluid’”’ of point observers, to which physi-
cal interpretations of the 24 dyadic and 3- vector components of the connection
arc attributed. The three spacelike unit vectors *A (¢ = 1,2,3) at cach point
complete alocal orthonorinal frame for the observer there. We expand the six
1- {orms w§ onthe w® , w? basis (a,b =1, 2, 3), and we expand the six 2- forms ]i’;
onthe w? A wb, w® A w?basis subject to the conditions for Ricci-flatness.

The 24 connection components are grouped into the following ensembles: 3 x 3
dyadics K and N, and 3- vectors a andw. The dyadic K has components K,
al 1 car be resolved into

](ab = Sab - Sz( Eachy




where Sab is the symmetric rate-of-strain 3- tensor Of the observer fluid, and €2,
is its axial vector of vorticity. or, inconvenient notation

K= §5- Qxl,

where 1 is the unit dyadic. The dyadic N is formed from the nine spacelike Rieci
rotati on cocflicients of the w® basis. It has comnpon ents Ngp and can similarly be
resolved into asyminetric part and anaxial vector n.:

sym
]_Vab = ]Vab = Ne &gl
Again we write in dyadic notation,
N = N¥ - x|

The vector w has components w, and is the time-dependent angular velocity of
the triad scen by an observer moving along w*, with respect to a Fermni-propagated
fraine. Since w is a standard notation for angular velocity this usage shouldin
context not be difficult to distin guish from the 1- forms w® wehave used up to
this point. (When necessary, we can write the components of anangular velocity
as w,.) The vector a has components a, and is the aceeleration of the point
, i.e,, their departure from geodesic motion. The vectors a and w are
in principle determined operationally by observing spring balances and supported
spinning particles inthe local frames. T'he tell components of the Weyl tensor
yield symmetric, tracefree dyadics A and B, the so-called electric and magnetic
tidal ficlds. The quantities A, B, K, N, a, andw arc defined interms of the A, ,
in [6].

The dyadic formalism is completed by the use of inner and outer 3--dimensional
multiplication (. and x ), and by convective derivatives (also knowias unit deriva -
tions) in the timelike and spacelike directions (“ and 1) ). Use of 3—covariant
spacclike derivation V, related to 1 by the 3- connection N, often is more cflicient

observers

than the use of 1). Detailed exposition of this forinalism , including thie various
3- vector and dyadic relations, the relations of 1) and V (involving N), and the
52 generalfirst order dyadic diflerential equations for vacuum 4- geornetry, are to
befoundinreferences [6] and ['7].

There arc some notational changes of which the reader s} 1ould be aware. ‘J 'he
dyadic we now (and in [7]) denote by N was in [6) denoted by N*. Tor the dyadic
N in [6] (which was symmnetric) one shiould now understand

N - (7 N)l-in x|
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and for the vector L in [6] one should now write 11.

Section 3 also gives the 12 additional dyadic equations specializing to 4- dimensional
special orthonors nal frames. The integrability properties of the dyadic equations
arc briefly discussed thercinteris of Cartan’s reduced characters and Cart an’s
test.

I Section 4 we present explicitly the complete set of 64 dyadic equations
resulti ng from substitution of dyadic componentsinthe HSOF exterior differential
system of Section 2. In these equations all time evolution has become
explicit. There are 34 equations for the timclike derivatives of the 24 connection
cocflicients and the 10 Weyl componenits, together with anadditional 30 transversc
equations in which no tiime derivatives appecar. By foriing appropriate lincar
combinations, the final equations have been arranged to show that they have
the saine first order symmetric hyperbolic (FFOSI 1) structure as recent formalisins
involving preferred time slices, designed for application to numnerical gravity [8)
[9] 110] [11] [12].

A number of known and new “hyperbolic reductions” of the vacuuin field
cquations, and the choices of gauge they allow, have beensurveyed by Friedrich
[13).He uses both tetrad formalism, and ADM variables based on preferred time
slit.iltg. Therole of the Bianchiidentitics is emphasized: the equations for A (in
[13], E)and B which propagate as spin- 2 massless fields (cf., e.g., [6]), arc given
in FOSI forin. The FOSH equations obtained in the present paper necessarily
include these. Nester’s conditions 011 the tetrad components of the con nection
however leave no further freedomin Choice of gauge (or frame), and scemnot to
have been previously used. They result, in 1"0S}1 structure with constant
coeflicients, and force all the dependent variables to evolve along null
cones.

An analysis using Cart an’s test shows that in the present case the observer
fluid nccessarily has vorticity, i .c., 2.5 O, so it is not 3- space orthonormal,
aJid our special orthonormal frammes therefore cannot be based thercefore on a
preferred slicing. Nevertheless, the relative simplicity of these equations may be
advantageous. No lapsc or shift variables have been introduced. of course, uscful
related coordinates can still be found. T'wo are suggested i nediately by the
cxact 2- forms in the exterior differential system, and we note in Appendix ] that
the dyadic coniditionis for a harimonic timelike coordinate are again of first order
symnetric hyperbolic (FFOSH) form, so can simply be added to our results.

A similar application of special orthonormal frames can be inade fen” 2 4 ]
gravity, againlcading to a constant cocflicient IFOSH systemn. This is outlined in



Appendix 2.

0.20 Higher dimensional special ort honormal frames

Using eight new variables y; and z; (11, 2,3, 4), we prolong the previously given
immersion exterior differential systern for vacuuin gravity, with two addit ional
exact, 2- forins, two additional 3- forms, and their closuic 4- forms. The 3- formns
and 4- forms essentially define the y; and Zi in terms of the conmection forms
(the w;pu]]cd back into the solutions), and the 2- forms require them to satisfy
Rarita-Schwinger equations. When expanded in tetrad comnponents in Section 3
it can be verified that this is precisely Nester’s prescription. The generators of
this exterior differential systemin 63 dimensions arc:

w A

wf Aw'
(dyi - wly;) Aot
(dzi - wlzj) Aw'
(! Aw* Aw' 4 2y; w! AWk A wl)sfjkl
wij Aw' Aw? - %z,wj A wk A w'&fjkl

gkl

wf AW Aw'e;

(- wiAwE AwF Aw' 4 20! Aw! Aw® Aw' 4 g(lyi/‘\wj/\u)k/\w1~ 2yiszwsAkawl)5fjk,
- u)isAw;Awiij—{ Qwi Aw' Aw® Aw” - (2 dzi Aw? Aw* Aw!- ziwﬁ/\ws/\wk/\wl)sfjk, (1)
Monte Carlo calculations [1] of the Cartan characteristic integers yicld
s= {6,8,14,16} ,

therefore the exterior differential systeimn is well set and causal; solutions are 19
dimensional, fibered over 4 dimensions. The wil do not appear in the exterior dif-
ferential system, so the fibers express co-frame rotation. But the w} arc explicitly
present so frarnes arc specialized and determined up to a sit nultancous rotation
al every point.

Since the two 2— forms are exact, two further variables canbe added, say ¢
and 77, together with 1 - forins

d¢ -yiw'

<



dy - zw'.
These should be uscful for introducing intrinsic coordinates into the HSOI for-

mulation.

0.3. The dyadic components of the connection forms w; and
Riemann forms J?
Now we expand the w! 011 w', defining the 24 3- dyadic and 3- vector compo-

nents K, N, w, and a, summarized in the Introduction and described in detail in
references [6] and [7]:

wig = ~wy = Npgw' 4 Nogw? o Negw® - %01
Woz == - W3g = N2]w2 4 N3]w3 + Ny W = ot
war = — wyg= Nagw® o A, 20" - Nppw? - Wew *
wig= W s Ky w4 Kypw? 4 Kqysw® + a'w!
wag - wazz Wopw? § Koaw® 4 Ky 0!+ a2wa4
waq = - waz = Kagw® -{ Kz w'4 Kapw? 4 ¢w? 2

We also expand the Riemann 2- forms on a basis consisting of w® A w? and
W' AW (a, b= 1, 2, 3), to define (inthe Ricei-flat case) syminetric, trace free, Weyl
dyadics A and B:

]{,]y == ]{2] P ])’3]0)1 /\w44 ])’32&)2/\w4'| ]333&73/\(,044 /131(.02/\0.)3—{ /132(.03/‘\(4)]-* Ag,gw]/\wz

Ras = - Raz = 1312w Aw' Biaw® Aw? 4 13 30" Aw A1 aw® Aw’ | A 30! Aw? | Ay w? Aw®
Ry = - Rys = Bogw® Aw? 4 Bay w Aw* - Boaw? Aw? 4 Agaw’ Aw? At w2 Aw®-) Agp® Aw!
]{]4 = - ]{4] = A]]U.)] /\wd—l Anwz/\wd-l A]3LU3/‘\U)4—{ ])’nw?/\wa—{ ]}12(‘1:‘/\(&)] -| ])’ww] /\L.LJ2

Hoq= . W = A22w2/\w4—1 Aggws/\uf’ + Amwl Aw ‘4 ]ian/\w] - Bzaf-d] Aw?- DIy o Aw®

Raq= - Rz = AszwAw? Asy wAw] Azpw? Aw? + Basw’ Aw?+ Bayw? Aw-) Basw® Aw?
(3
The 10 Weyl components satisfy Agy = Agg, Age: 0, Bay = ey and By, = 0.
It canbe verified that the Ricimann syminctries are satisfied, namcly,

AW A REAGH 0
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and

RInwt = 0,

and also that the four 3- form conditions for Ricci-flatness, namely,
]{3 A LLJk 5:7.“:[ = 0

have been imposed.

From the 3- forms of (1) we can now find the component expansions of the
fields ¥iand z;, 011 anintegral manifold of the exterior differential system. These
are  given by the following:

yi= (v y") = (NxI- a,- T7K) &

zi= (2% - 21) = (KxI- w,TrN). (5)

We could alternatively have used vectors 2n= N xland2Q: K xI. The twelve
dyadic first order equations arising frorn the two additional HSOI® 2- forms then
arc:

V(T K)4(TrK)ad(Nxl- a)"-{ K-(Nxl-a)-lw x (NxI- a) = O (6)
V x (Nxl-a) 4 (I K)Kxl= O (7)

V(I N) 4 (Tr Ny a- (Kxl - w)- K- (Kx1-w)-w x (Kxh)= () (8)
V x (Kxl- w)-(17-N)Kxl: 0. 9

The sets of first order equations we have derived, where the dyadic components
arc taken as depend ent variables and the wt form anind ependent basis set, may be
analyzed alternatively by another of Cartan’s techniques. We must know that
the set includes all integrability conditions, and it must also be possible to
write an exterior diflerential systemn such that the left, hand sides linearly involve
exterior derivatives of the dependent variables (e.g., 110 terms of the forimmdK, A
dN.4), while the right hand sides only involve forms in the adopted indepen dent
basis (here w, w! Aw?, ete. ). So-called reduced characters s! are then conveniently
comnputed fromn the left-hand sides alone, and Cartan’s test is to calculate

g-1

h=Y(g- i) s

= 0




If . is equal to the number of independent first order equations, one has established
involutivity, the wc]] set nature of the problein. Morcover, if

g-1
~ 4
> s 0,
1= 0

!
S, M- g-
g M- g

the Cauchy-Kowaleski solutions are unique and causal.
The 52 general vacaumn dyadic equations [6] [14] were of this {form, having six
‘2- formsand six 3— forms in 34 dependent variables, Their left hand sides are:

dNgy Aw? - dwy Aw!

di o A @b dag A w?

dAg A wb Awt - é dB,, A WS A Wt 5.de

By A w41 dAg A o A W' ey,

We calculate 88 = {O, 6, 12, 1 O} , s0 % = 52. There are however s = 6 arbitrary
functions in the solution. Thenew HSOY system of dyadic equations adjoins 12
cquations in two additional 2- forms to express equations (6)- (9). Their left hand
sides arc:

d(2n, - a,) A W+ d(Tr K)Aw!

d(2§), - wy) A W - d(1'r N)Aw’.

Thereduced characters arc s = {0,8, 14, 12} , h:64and s, = ().

0.4. The FOSH dyadic equations

Lincar combinations of the 52 general dyadic equations and the 12 new conditions
due to Nester cannow easily be made to put the result in FOSH forim. The result
is 34 cquations involving the time derivatives and symmetric space derivatives of
the dyadic variables and A and B, and 30 “constraint” or transverse relations not
involving time derivatives. We give them in the following, written in full with
their right, hand sides:

a- V- -K'yVxw:.KxN - w-N-(7TrN)w-42K n (lo)
w4V . N - Vxas-(IrN)ai(202-w)- K- 2(77K) Q- 2n-N (12)
K- aV-2Vn42nV = - K- K- 2(T7K)2 x!- w x K-l K xw-laa- A (12
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N-1 wV42VQR-2QV = - K-N-w X N{Kxa-aw-2(7rN)Qxl4 B. (13)

We mention in passing that using 1) instead of V in general inakes the right
handsides of these cquations less concise. The prominent exception to this state-
ment is the first equation, which becomes homogeneous and linear:

a- DK Dxw:= 0

Here it has been convenient to use n and €2, and V can operate from the right

as well as from the left, to expresstransposedindices. It is best to return to the

nine components of K and of N to scc the I'OSH structure; e.g. write (2 Vn),, -

V1Nys - VN3, (2nV),, = V3N3; - V3N, (20V),, = VoK3; - VaKys, cle.

The left hand sides of the equations are a lincar operator shown in Figure 1.
The 24 constraint equations not containing tiime derivatives arc:

V xK: 20 - B (14)
Vo Nz - INT NS DK K (2K) X1 29w - A (15)
V x (& 211) = 2(TrK)Q (16)

V X (w-29) = - 2(17 N)Q2 (17)

By taking asccondtime derivative of thel'OSH equations, permuting space and
time derivatives, andsubstituting back both the FOSH and the constraint equa-
tions, it can be scen that the dyadic variables all propagate causally along null
CONCS,

The 1/0S11 cquations for the Weyl components arve those for traceless tran -
verse massless spin- 2 fields (dyadic and Bianchiidentitics, linearly comnbined)

B- VxA4AXV:

Bxw-—wxB-AxajaxA- K'"B-B. K- 2(77K)B | KyB-I B K

_ (18)
20 VxB- BxV:-

Axw-wxA4Bxa-axB-K A{A K- 2(1r K) A+ KXXA-}'AXK
"(19)




with constraint equations
V.A: - KxB- 10-B (20)

V . B = KxA|482-A. (21)

The left hand sides of the Bianchiequations arc the lincar operator given in Figure
2.

Finally, it should be remarked that our derivations from well set exterior difler-
cntial systems obviate any need to verify that the transverse constraint equations
(not involving time derivatives) are compatible withthe I[7OS1I system, and that
they are propagated invariautly by it.

0.5. Appendix 1: Harmonic and co-moving coordinates

The formulation of this paper is coordillatc-free and gauge independent. It may
however also be of use to briefly record how a harmonic time coordinate and
co-moving (with 4A*) spacelike coordinates can be adopted.

If in coordinate language 1., ¢ = O (y,v = 1, ..., 4), thetetrad version,
introducing fields ¢ =1, A:=Vy, is

A-Vé:=-K-A- wx A ¢a
J;»V-A:a-A-d;(’J'r K)
V xA: 2082

This set consists of four I'OSH cquations plus 3 transverse constraints; it can be
added to, and solved simultancously with, the equationsin %c.tie]) 4.

Co-moving spacclike coordinates, say ® (= 1,..., 3), such that2®: O arc
found by setting e =Va®, and the integrability conditions for this are

¢“=-K-e"- wxe®

V xe®= 0.

The e arc, understandably, the first dependent variables wehave fou 11.d whose
causal propagation is strictly timelike and not along the local null cone. We
introduce coordinate components A-e® = A% and h*% = ¢® ¢, and aso calculate
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the inverse hap (B hep = 64). Then ¢, A, = hapgAP and hgg, functions of 2@, 1,
enter the final line clement:

ds® = — ¢~ 2d1* 4 2¢7 %A, da®dl - (hap - ¢ 2A4 Ag) da® da?

il covariant 4 — vector terms, the coordinate components of the tetrad vectors take

the form
A LA
"o a a
e ()

"X 0
d)_ ]Aa d’»] )

The orthonormal triad components of the vector A are written , A¢ A, .

’!‘A“

0.6. A ppendix 2: 2 41 dimensions] gravity

An entirely parallel development can be made of special orthonormal frames
(SO¥)in24 1 gravity, The exterior differential system for imiersion of 3- dimensional
flat spaces inthe 21 dimensional orthonormal frame bundle over (i dimensional flat
space, which is gencrated by the usual immersion forms w# and dw? (A = 4,5,6),
and the Riemann 2- forms If (@, b,¢ = 1,2,3), has s = {3,6,3} andg: 9. We
add a 2- forin

Wl A WES yw” A wie,,

a 3- form
a b 1 2 3
Wb AW AW - zw Aw A w

and their closures, to introduce 4 new variables y,, and z, so the exterior differ-
cntial system is prolonged to a total of 25 dimensions. The SOI' conditions are
mmposed as two additional exact forms (whiicl 1 prolong, or adjoin, solutions of a
lincar Dirac equation [4 ]), namely,

dz

d(y.w*).

Now the Cartancharacters show the exterior diflerential system to be we]] set and
causal with
s= {4,8,7} ,

anid g = 6. Solutions are 3- parameter co frame rotation bu ndles over 3- space,
determined by causal integration from 2- spaces.

1]



Orthonorinal triad formalisi for 3- geometry yields 9 equations for 9 Ricci
rolation cocflicients grouped in a dyadic N:

V xN4IN T N= 0

The SOF conditions require theidentification of 2 as 7' N and the y, as the
components of n = %N xl. To the nine equations for a{flat 3-- manifold arc added
six SOY equations:

V({1rN)=
Vx n: 0.

Inscrting a - 1corresponding to timelike signature of the 3 direction, the complete
set, fallsinto 1“OS11 forin with G transverse equations. The left hand side of the
cvolution operator is given in Figure 3.
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Dy . . . . . . . - Ds . ) 1, " Aqg

Dy . . : . . . - Dy =1 . Az

. Dy . . . . . . Dy —D, Ass

21, : . Dy -Dsz - : D, =D, Atz

oDy - : Dy =Dy =Dy - Dy Az

: - 2Dy -1 - Dy, Dy =Dy - As

Dy - =Dy Dy . . - . . Iy

-Ds I . . Dy - - . . Bay

. . . -y Dy . . Dy . . . Bas
-Dy g . . =Dy D : : . 2Dy : : 1o
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Figure 2: Thie FOSH opcrator shown acting on the Wey! components.
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Figure 3: The FOSH operator in 24 1gravity shown acting on the components Ngp.




